skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Strkalj, Nives"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the dielectric Properties of HfO 2 -based films in the optical–high frequency range. The demonstrated tunability of the optical dielectric constant of HfO 2 -based compounds is of great relevance for optoelectronic applications, e.g., high-refractive index dielectrics for nanoantenna and optical coatings for electronic displays. Since the optical dielectric constant of HfO 2 is determined by the electronic structure and its crystal environment, we tune the physical properties of HfO 2 films on MgO by adding different dopants. In this work, we aim to determine the influence of doping together with the resulting crystal structure on the optical dielectric constant. Hence, we studied 20 mol. % Y-doped HfO 2 (HYO), Hf 0.5 Zr 0.5 O 2 (HZO), and Hf 0.5 Ce 0.5 O 2 (HCO). Among the dopants, Y 2 O 3 has the lowest, ZrO 2 an intermediate, and CeO 2 the highest real part of the optical dielectric constant. The optical dielectric constant is found to be lowest in the cubic HYO films. An intermediate dielectric constant is found in HZO films that is predominantly in the monoclinic phase, but additionally hosts the cubic phase. The highest dielectric constant is observed in HCO films that are predominantly in the cubic phase with inclusions of the monoclinic phase. The observed trend is in good agreement with the dominant role of the dopant type in setting the optical dielectric constant. 
    more » « less